Tailoring the performance of poly(lactic acid)‐based reactive blends: The effect of vinyl acetate and dicumyl peroxide content

Author:

Ferreira Eduardo da Silva Barbosa1ORCID,do Nascimento Emanuel Pereira1ORCID,Luna Carlos Bruno Barreto1ORCID,dos Santos Filho Edson Antonio1ORCID,Wellen Renate Maria Ramos2ORCID,Araújo Edcleide Maria1ORCID

Affiliation:

1. Department of Materials Engineering Federal University of Campina Grande Campina Grande Brazil

2. Department of Materials Engineering Federal University of Paraíba João Pessoa Brazil

Abstract

AbstractPoly(lactic acid) has been gaining prominence in academia and industry, mainly due to being a biopolymer and biodegradable material. Nevertheless, mainly due to its high fragility, work has been carried out in order to seek alternatives to improve this drawback. Hence, this work aims to evaluate the effect of the vinyl acetate content using two types of EVA (EVA1 with 28% and EVA2 with 19%) in dynamically vulcanized PLA/EVA blends, using several dicumyl peroxide (DCP) contents, that is, 0.3, 0.5, and 0.7 phr. Blends were produced using an internal mixer, and the tensile, impact and HDT specimens were injection molded. By FTIR and torque rheometry, it was verified that, upon DCP addition, there was evidences of reticulation, resulting in crosslinked PLA, crosslinked EVA, as well as PLA‐g‐EVA. Through tensile and impact strength tests, it was observed substantial increases in the elongation at break, and in impact strength, mainly for the compounds with higher content of vinyl acetate (EVA1). Impact specimens made with PLA/EVA120 0.7 DCP, PLA/EVA130 0.5 DCP, and 0.7 DCP, did not completely break, due to the probable development of the in situ PLA‐g‐EVA compatibilizer among the present phases. Therefore, it is believed that a more homogeneous microstructure was obtained, as observed by SEM images, highlighted upon the DCP content increase. It was verified that the highest vinyl acetate content is of paramount importance for obtaining PLA/EVA blends with better compatibility as well as EVA1 being more susceptible to crosslinking using DCP, resulting in blends with greater toughness.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Apoio à Pesquisa do Estado da Paraíba

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3