Surface Vibration‐Mediated and Multiphonon Relaxation‐Assisted Antithermal‐Quenching Shortwave Infrared Emission in Ho‐Based Double Perovskite With Long Lifetime

Author:

Duan Qiudong123,Zha Yu123,Xu Yusheng123,Yang Yougui123,Guo Tianyu123,Meng Fanju123,Wu Yuting123,Hong Dongfeng123,Han Jin123,Yang Yong123,Wang Qi123,Zhou Dacheng123,Wen Ming4,Wen Yugeng123,Qiu Jianbei123ORCID

Affiliation:

1. Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming 650093 China

2. Key Lab of Advanced Materials of Yunnan Province Kunming 650093 China

3. Southwest United Graduate School Kunming 650092 China

4. New Materials Laboratory State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals Kunming Institute of Precious Metals Kunming China

Abstract

AbstractThermal quenching generally predominates in Er3+ 1540 nm luminescence quenching at elevated temperatures, due to intensified lattice vibration and efficient overtone vibrational relaxation by O─H stretch. This issue impedes practical device applications of shortwave infrared Er‐doped phosphors. Herein, with the mediation of surface vibrational phonons, anti‐thermal quenching of Er3+ 1540 nm emission is reported in (220)‐dominated Er3+‐doped Cs2NaHoCl6 double perovskite. The downshifting emissions can be boosted with rising temperatures from 303 to 543 K, reaching 225%@483 K of the initial intensity at 303 K, accompanied with a long lifetime of 33.02 ms at 483 K. By combining temperature‐dependent in situ Raman and Fourier transform infrared spectroscopies with the excited‐state dynamics results, the coordination role of water molecules is verified, serving as promoters instead of quenchers on the (220) facet at high temperatures. Furthermore, efficient energy transfer from Ho3+ to Er3+ enables intense 1540 nm emission with a photoluminescence quantum yield of 78.1% under 450 nm excitation. Finally, a compact thermally stable phosphor‐converted light‐emitting diode (LED) is designed as a narrowband shortwave infrared light source with a blue LED chip. This work pushes the improved understanding of achieving thermal‐enhanced Er3+ luminescence for potential broad applications.

Funder

Natural Science Foundation of Yunnan Province

National Natural Science Foundation of China

National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3