Strategies to Realize Efficient and Stable Broadband NIR Emission in Germinate Oxides

Author:

Dumesso Misgana U.1,Zheng Guojun2,Wang Dandan3,Basore Endale T.1,Xiao Wenge2ORCID,Qiu Jianrong124

Affiliation:

1. College of Optical Science and Engineering Zhejiang University Hangzhou 310027 China

2. Institute of Light+X Science and Technology College of Information Science and Engineering Ningbo University Ningbo 315211 China

3. Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics Jilin Normal University Siping 136000 China

4. CAS Center for Excellence in Ultra‐Intense Laser Science Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China

Abstract

AbstractPhosphor‐converted light‐emitting diodes (pc‐LEDs) are efficient and cost‐effective ultrabroadband light sources for miniaturizing various optical systems, but they exhibit poor optical performance due to the lack of efficient near‐infrared (NIR) phosphors with a wide spectral coverage of 700−1100 nm. Although germanate oxides are a promising class of host materials for Cr3+ to generate broadband NIR light, the preferred formation of [CrO4]4− and the high vapor pressure of Ge element cause these Cr3+ activated phosphors to suffer from low internal quantum efficiency (IQE) and poor thermal stability. Here, highly efficient (IQE > 90%) and thermally stable broadband NIR emission of Cr3+ in the germinate garnet Ca2LuMgScGe3O12 (CLMSG) are obtained by exploiting a two‐step sintering method to achieve full reduction of Cr4+ to Cr3+. Further, efficient energy transfer from Cr3+ to Yb3+ is leveraged to significantly improve the emission intensity of CLMSG:Cr3+ in the shortwave infrared range of 900−1100 nm. Finally, an ultrabroadband NIR pc‐LED with a high NIR conversion efficiency (21.5%@10 mA) and high NIR power (116.4 mW@350 mA) is demonstrated to verify the strong capability of CLMSG:Cr3+, Yb3+ in blue‐to‐NIR light conversion. The results open up new ways to realize efficient ultrabroadband NIR‐emitting materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3