Abstract
AbstractRed phosphor materials play a key role in improving the lighting and backlit display quality of phosphor-converted white light-emitting diodes (pc-WLEDs). However, the development of a red phosphor with simultaneous high efficiency, excellent thermal stability and high colour purity is still a challenge. In this work, unique non-concentration quenching in solid-solution Cs3Gd1 − xGe3O9:xEu3+ (CGGO:xEu3+) (x = 0.1–1.0) phosphors is successfully developed to achieve a highly efficient red-emitting Cs3EuGe3O9 (CEGO) phosphor. Under the optimal 464 nm blue light excitation, CEGO shows a strong red emission at 611 nm with a high colour purity of 95.07% and a high internal quantum efficiency of 94%. Impressively, this red-emitting CEGO phosphor exhibits a better thermal stability at higher temperatures (175–250 °C, >90%) than typical red K2SiF6:Mn4+ and Y2O3:Eu3+ phosphors, and has a remarkable volumetric negative thermal expansion (coefficient of thermal expansion, α = −5.06 × 10−5/°C, 25–250 °C). By employing this red CEGO phosphor, a fabricated pc-WLED emits warm white light with colour coordinates (0.364, 0.383), a high colour rendering index (CRI = 89.7), and a low colour coordinate temperature (CCT = 4508 K). These results indicate that this highly efficient red-emitting phosphor has great potential as a red component for pc-WLEDs, opening a new perspective for developing new phosphor materials.
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
307 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献