Plasmonic Architectures Boosting Performance in Terahertz Photodetectors

Author:

Zhang Kaixuan12ORCID,Han Li1,Hu Zhen13,Xiao Kening1,Jiang Mengjie12,Yu Anqi4,Pan Xiaokai1,Wang Dong1,Zhang Libo1,Lv Xuyang12,Tian Shijian2,Lan Shiqi12,Xing Huaizhong2,Zhang Ning5,Politano Antonio6,Wang Lin1

Affiliation:

1. State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences 500 Yutian Road Shanghai 200083 China

2. Department of Optoelectronic Science and Engineering Donghua University Shanghai 201620 China

3. University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China

4. Shanghai Key Laboratory of Modern Optical Systems Terahertz Technology Innovation Research Institute Terahertz Spectrum and Imaging Technology Cooperative Innovation Center University of Shanghai for Science and Technology 516 Jungong Road Shanghai 200093 China

5. Zhejiang Laboratory Intelligent Perception Research Institute Research Center for Quantum Sensing Hangzhou 311121 P. R. China

6. Department of Physical and Chemical Sciences University of L'Aquila via Vetoio L'Aquila 67100 Italy

Abstract

AbstractIn terahertz (THz) photodetection, the efficient interaction between light and matter is crucial for enhancing material properties in nonequilibrium states. This work introduces an innovative approach using spiral plasmonic architectures to effectively control inversion‐symmetry coupling, promoting the operational efficiency of light‐induced hot‐carrier effects in the THz band. The strategic design of the spiral structures, focusing on chirality and symmetry, enables the successful manipulation of a self‐driven photocurrent, adapting its direction and magnitude as needed. This design facilitates the improvement of THz detectors in terms of sensitivity and responsiveness. Additionally, the integration of asymmetric metallization and black phosphorus in the detectors has achieved noteworthy performance metrics, such as a maximum responsivity of 70.2 V W−1 at 0.30 THz, a fast response time below 6 µs, and a noise‐equivalent power lower than 1.95 × 10−10 W Hz−1/2. Harnessing the potential of light‐induced hot carrier effects and advanced band‐structure engineering, this research offers a pragmatic approach for the development of high‐efficiency THz photodetectors, opening new avenues for applications like remote sensing and rapid imaging.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3