Designed Semiconductor Network Random Lasers

Author:

Saxena Dhruv1ORCID,Fischer Anna12,Dranczewski Jakub12,Ng Wai Kit1,Trivino Noelia Vico2,Schmid Heinz2,Raziman T. V.13,Arnaudon Alexis34,Barahona Mauricio3,Hess Ortwin15,Moselund Kirsten67,Sapienza Riccardo1

Affiliation:

1. Blackett Laboratory Department of Physics Imperial College London London SW7 2AZ UK

2. IBM Research Europe ‐ Zürich Säumerstrasse 4 Rüschlikon 8803 Switzerland

3. Department of Mathematics Imperial College London London SW7 2AZ UK

4. Blue Brain Project École Polytechnique Fédérale de Lausanne (EPFL) Campus Biotech Geneva 1202 Switzerland

5. School of Physics and CRANN Institute Trinity College Dublin Dublin 2 Ireland

6. Paul Scherrer Institut Forschungsstrasse 111 Villigen 5232 Switzerland

7. EPFL Lausanne 1015 Switzerland

Abstract

AbstractConventional lasers typically support a well‐defined comb of modes. Coupling many resonators together to form larger complex cavities enables the design of the spatial and spectral distribution of modes, for sensitive and controllable on‐chip light sources. Network lasers, formed from a mesh of dye‐doped polymer interconnecting waveguides, have shown great potential for random lasing with a highly sensitive and customizable lasing spectrum albeit suffering from gain bleaching. Here on‐chip semiconductor network lasers are introduced, and fabricated by etching an InP epilayer bonded onto a wafer, as a reproducible, stable and designable random laser with a rich multimodal spectrum and low room temperature lasing threshold. Thresholds are observed as low as 60  for InP networks with an optimum link width of 450 nm and thickness of 120 nm. It is further shown, both experimentally and numerically, that the network density directly affects the mode spatial distribution, and lasing modes are spatially localized over only 10–20 connected links in large dense networks. The InP network lasers are also stable to pump illumination and sensitive to small variations in the pump pattern. These studies lay the ground for the future design of random lasers tailored to the application in robust semiconductor platforms with impact for sensing, signal processing, cryptography and machine learning.

Funder

Engineering and Physical Sciences Research Council

Science Foundation Ireland

Imperial College London

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3