Quintic Dispersion Soliton Frequency Combs in a Microresonator

Author:

Zhang Shuangyou1,Bi Toby12ORCID,Del'Haye Pascal12ORCID

Affiliation:

1. Max Planck Institute for the Science of Light 91058 Erlangen Germany

2. Department of Physics Friedrich‐Alexander‐Universität Erlangen‐Nürnberg 91058 Erlangen Germany

Abstract

AbstractChip‐scale optical frequency combs have attracted significant research interest and can be used in applications ranging from precision spectroscopy to telecom channel generators and lidar systems. In the time domain, microresonator based frequency combs correspond to self‐stabilized soliton pulses. In two distinct regimes, microresonators are shown to emit either bright solitons in the anomalous dispersion regime or dark solitons (a short time of darkness in a bright background signal) in the normal dispersion regime. Here, the dynamics of continuous‐wave‐laser‐driven soliton generation is investigated in the zero‐group‐velocity‐dispersion regime as well as the generation of solitons that are spectrally crossing different dispersion regimes. In the measurements, zero‐dispersion solitons with multipeak structures (soliton molecules) are observed with distinct and predictable spectral envelopes that are a result of fifth‐order dispersion of the resonators. Numerical simulations and the analysis of bifurcation structures agree well with the observed soliton states. This is the first observation of soliton generation that is governed by fifth‐order dispersion, which can have applications in ultrafast optics, telecom systems, and optical spectroscopy.

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3