Geometry optimization for dark soliton combs in thin multimode silicon nitride microresonators

Author:

Zhang YaojingORCID,Zhang Shuangyou,Bi Toby1ORCID,Del’Haye Pascal1

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract

Silicon nitride (Si3N4) has been well established as an ultralow-loss material for integrated photonics, particularly for the generation of dissipative Kerr soliton frequency combs, enabling various applications for optical metrology, biological imaging, and coherent telecommunications. Typically, bright soliton generation in Si3N4 devices requires thick (>600 nm) films to fulfill the condition of anomalous dispersion at telecom wavelengths. However, thick films of ultralow-loss Si3N4 (>400 nm) often suffer from high internal stress, leading to cracks. As an alternative approach, thin Si3N4 films (<400 nm) provide the advantage of one-step deposition and are widely applied for commercial use. Here, we provide insights into engineering an integrated Si3N4 structure that achieves optimal effective nonlinearity and maintains a compact footprint. A comparative analysis of Si3N4 resonators with varying waveguide thicknesses is conducted and reveals that a 400-nm thin Si3N4 film emerges as a promising solution that strikes a balance among the aforementioned criteria. Based on a commercially available 400-nm Si3N4 film, we experimentally demonstrate the generation of low-noise coherent dark pulses with a repetition rate of 25 GHz in a multimode Si3N4 resonator. The compact spiral-shaped resonator has a footprint of 0.28 mm2 with a high-quality factor of 4 × 106. Our demonstrated dark combs with mode spacings of tens of GHz have applications in microwave photonics, optical spectroscopy, and telecommunication systems.

Funder

H2020 Marie Skłodowska-Curie Actions

Max-Planck-Gesellschaft

H2020 European Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3