Giant Optical Nonlinear Response up to 60th‐Order Induced by the Ytterbium Energy Relay Mediated Photon Avalanches

Author:

Wang Chenyi1,Wen Zizhao1,Pu Rui1,Zhan Qiuqiang1ORCID

Affiliation:

1. Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 P. R. China

Abstract

AbstractThe exploration of photon avalanching (PA) luminescence in different lanthanide emitters has profound implications in plentiful frontier applications. However, studies for universal mechanisms at the nanoscale to exhibit giant nonlinear responses in various avalanching emitters are limited. Here, record‐breaking nonlinear responses up to 60th‐order in high‐lying emitting levels of various emitters at room temperature are generated by proposing a universal mechanism named energy relay‐mediated photon avalanche (enrePA). By harnessing energy from the avalanching nano‐engine through the energy relay of Yb3+ ions, the brightness of blue emissions from Tm3+ and Ho3+ can be enhanced with giant optical nonlinearity up to 60th and 38th order, respectively. Further incorporating gadolinium‐based systems, more emitters (Tb3+, Eu3+, Dy3+, Nd3+) can be activated with extreme optical nonlinearities up to 48th‐order. By expanding PA into the full‐spectrum range, the enrePA mechanism opens exciting avenues for flexible and high‐efficiency PA modulation in multilayer nanostructures, enabling the applicability of PA in more technologies such as super‐resolution imaging, lithography, and optical detection.

Funder

National Key Research and Development Program of China

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3