Abstract
AbstractTwo-dimensional (2D) layered semiconductors with nonlinear optical (NLO) properties hold great promise to address the growing demand of multifunction integration in electronic-photonic integrated circuits (EPICs). However, electronic-photonic co-design with 2D NLO semiconductors for on-chip telecommunication is limited by their essential shortcomings in terms of unsatisfactory optoelectronic properties, odd-even layer-dependent NLO activity and low NLO susceptibility in telecom band. Here we report the synthesis of 2D SnP2Se6, a van der Waals NLO semiconductor exhibiting strong odd-even layer-independent second harmonic generation (SHG) activity at 1550 nm and pronounced photosensitivity under visible light. The combination of 2D SnP2Se6 with a SiN photonic platform enables the chip-level multifunction integration for EPICs. The hybrid device not only features efficient on-chip SHG process for optical modulation, but also allows the telecom-band photodetection relying on the upconversion of wavelength from 1560 to 780 nm. Our finding offers alternative opportunities for the collaborative design of EPICs.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献