Structural Confinement Induced Near‐Unity Quantum Yield for Single‐Band Ratiometric Thermometry

Author:

Chang Jiwen1,Wang Yu1,Zhang Zixuan1,Guo Dongxu1,Zhao Peihang1,Wang Nan1,Wang Zhijun1,Li Leipeng1,Li Panlai1,Suo Hao1ORCID

Affiliation:

1. National‐Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Optic‐electronic Information and Materials, College of Physics Science & Technology Hebei University Baoding 071002 China

Abstract

AbstractLuminescence quenching at high dopant concentration and temperature typically limits the brightness of luminescence materials, which remains a major obstacle in diverse technological applications, especially in the field of luminescence thermometry. In this work, a unique class of non‐concentration quenching double‐tungstate phosphors is reported that feature the near‐unity quantum yield of Tb3+ and Eu3+ emissions induced by the structural confinement effect. Mechanistic studies affirm that the activator ions can be isolated in NaYW2O8 crystal to confine the absorbed photon energy, leading to a relatively high quenching concentration of various lanthanide activators. By facilitating interionic cross‐relaxation at heavy dopant concentration, a remarkable thermal enhancement of Tb3+ emissions over 20‐fold upon the excitation of excited‐state absorption is recorded. In contrast, thermally quenched emissions are detected under the excitation of ground‐state absorption. This excitation wavelength‐dependent thermal behavior of Tb3+ emissions is harnessed for single‐band ratiometric thermometry, registering superior thermal sensitivity and resolution (Sr = 4.01% K−1, δT = 0.1 K). The advances in combating concentration and thermal quenching of luminescence materials provide exciting opportunities for flexible thermometry in real‐world sensing scenarios.

Funder

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3