Less is more: dimensionality reduction as a general strategy for more precise luminescence thermometry

Author:

Ximendes Erving,Marin RiccardoORCID,Carlos Luis DiasORCID,Jaque DanielORCID

Abstract

AbstractThermal resolution (also referred to as temperature uncertainty) establishes the minimum discernible temperature change sensed by luminescent thermometers and is a key figure of merit to rank them. Much has been done to minimize its value via probe optimization and correction of readout artifacts, but little effort was put into a better exploitation of calibration datasets. In this context, this work aims at providing a new perspective on the definition of luminescence-based thermometric parameters using dimensionality reduction techniques that emerged in the last years. The application of linear (Principal Component Analysis) and non-linear (t-distributed Stochastic Neighbor Embedding) transformations to the calibration datasets obtained from rare-earth nanoparticles and semiconductor nanocrystals resulted in an improvement in thermal resolution compared to the more classical intensity-based and ratiometric approaches. This, in turn, enabled precise monitoring of temperature changes smaller than 0.1 °C. The methods here presented allow choosing superior thermometric parameters compared to the more classical ones, pushing the performance of luminescent thermometers close to the experimentally achievable limits.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3