Affiliation:
1. Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, College of Physics and Materials Engineering Dalian Minzu University 18 Liaohe West Road Dalian 116600 P. R. China
Abstract
AbstractThe burgeoning phosphor‐converted near‐infrared light‐emitting diodes (pc‐NIR LEDs) have important applications in special illumination and spectroscopy analysis. However, the development of efficient NIR‐emitting phosphors with high performance is still a challenge. In this work, a chemical unit co‐substitution strategy is proposed to realize the excitation transition regulation and successfully achieve high‐performance NIR luminescence in Ca3‐yNayMg1‐ySb2‐xAl2+yO12: xCr3+ (0 ≤ x ≤ 0.05, 0 ≤ y ≤ 1) garnet‐type solid solution phosphors. Through the excitation transition modulation from the 4A2 ground state to the 4T1(4P) and 4T1(4F) excitation state, the excitation intensity at the blue light region is largely enhanced by 25.6 times. Moreover, the NIR‐emitting efficiency and thermal stability are improved, with the optimal luminescence internal quantum efficiency of 90.6% and thermal stability of 97%@423 K, without any flux‐assisted sintering or reduction atmosphere protection. The structure regulation induced small Stokes shift, weak electron‐phonon coupling effect, and decreased non‐radiative transition are responsible for the excellent NIR‐emitting performance. Finally, the NIR pc‐LED is fabricated with photoelectric efficiencies of 18.7%@100 mA and NIR output powers of 63 mW@100 mA, presenting potential applications in nondestructive internal defect detection, veins imaging, and night vision surveillance.
Funder
Liaoning Revitalization Talents Program
Dalian Science and Technology Innovation Fund
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献