Enhanced Terahertz Phonon Polariton in Lithium Niobate Chip

Author:

Zhang Baolong12ORCID,Li Yifei1,Wu Xiaojun3ORCID,Xu Xitan4,Lu Yao4,Wu Qiang4,Wang Xuan15,Lei Hongyi12,Ma Jinglong1,Liao Guoqian1,Li Yutong125

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences Beijing 100190 China

2. School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China

3. School of Electronic and Information Engineering Beihang University Beijing 100191 China

4. MOE Key Laboratory of Weak‐Light Nonlinear Photonics TEDA Applied Physics Institute and School of Physics Nankai University Tianjin 300457 China

5. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China

Abstract

AbstractTerahertz (THz) phonon polaritons, fundamental quasi‐particles that couple lattice vibrations with electromagnetic fields at THz frequencies, are found in a variety of materials that offer the potential for a wide range of THz optoelectronic devices and on‐chip integrated systems. However, these compact devices and on‐chip systems are hampered by the absence of on‐chip powerful THz phonon polariton sources. In this study, the efficient generation and amplification of THz phonon polaritons are proposed and directly visualized on a lithium niobate (LN) chip via a tilted pulsefront phase matching technique. By combining lateral pumping and phase matching schemes, two orders of magnitude are successfully attained in the interaction distance between the pump light and the LN chip, accompanied by a substantial amplification of generated THz phonon polariton. The results of this study may lead to abundant potential applications in chip scale THz photonic devices and systems based on LN materials and its integrated heterostructures.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3