Compliant substrates mitigate the senescence associated phenotype of stress induced mesenchymal stromal cells

Author:

Gresham Robert C. H.1,Filler Andrea C.1,Fok Shierly W.1,Czachor Molly2,Schmier Natalie1,Pearson Claire1,Bahney Chelsea2,Leach J. Kent13ORCID

Affiliation:

1. Department of Orthopaedic Surgery School of Medicine, UC Davis Health Sacramento California USA

2. Center for Regenerative and Personalized Medicine Steadman Phillippon Research Institute Vail Colorado USA

3. Department of Biomedical Engineering UC Davis Davis California USA

Abstract

AbstractMesenchymal stromal cells (MSCs) are a promising cell population for musculoskeletal cell‐based therapies due to their multipotent differentiation capacity and complex secretome. Cells from younger donors are mechanosensitive, evidenced by changes in cell morphology, adhesivity, and differentiation as a function of substrate stiffness in both two‐ and three‐dimensional culture. However, MSCs from older individuals exhibit reduced differentiation potential and increased senescence, limiting their potential for autologous use. While substrate stiffness is known to modulate cell phenotype, the influence of the mechanical environment on senescent MSCs is poorly described. To address this question, we cultured irradiation induced premature senescent MSCs on polyacrylamide hydrogels and assessed expression of senescent markers, cell morphology, and secretion of inflammatory cytokines. Compared to cells on tissue culture plastic, senescent MSCs exhibited decreased markers of the senescence associated secretory phenotype (SASP) when cultured on 50 kPa gels, yet common markers of senescence (e.g., p21, CDKN2A, CDKN1A) were unaffected. These effects were muted in a physiologically relevant heterotypic mix of healthy and senescent MSCs. Conditioned media from senescent MSCs on compliant substrates increased osteoblast mineralization compared to conditioned media from cells on TCP. Mixed populations of senescent and healthy cells induced similar levels of osteoblast mineralization compared to healthy MSCs, further indicating an attenuation of the senescent phenotype in heterotypic populations. These data indicate that senescent MSCs exhibit a decrease in senescent phenotype when cultured on compliant substrates, which may be leveraged to improve autologous cell therapies for older donors.

Funder

National Institutes of Health

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

Wiley

Subject

Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3