Changes in stemness properties of human adenoid-derived mesenchymal stem cells during in vitro aging

Author:

Yuce Melek1ORCID,Albayrak Esra1ORCID,Akgül Gökhan2ORCID,Yağcı Nurcihan3ORCID,Tekcan Esra1ORCID

Affiliation:

1. ONDOKUZ MAYIS UNIVERSITY

2. UNIVERSITY OF HEALTH SCIENCES, SAMSUN HEALTH RESEARCH CENTER

3. ISTANBUL UNIVERSITY

Abstract

Mesenchymal stem cells (MSCs) have significant therapeutic potential in gene therapy. In vitro replicative senescence causes a decrease in the proliferation capacity of MSCs and changes in stem cell properties. In this study, adenoid tissue was focused as a new MSC source. The stem cell properties and the proliferation potential of adenoid-derived MSCs after the long-term in vitro replicative senescence were investigated. Adenoid-derived MSCs (A-MSCs) were cultured up to passage 20 and were analysed for cell morphology, proliferative capacity, differentiation potential, and surface marker expression. In addition, the expression profile of cell cycle, apoptosis, and senescence-related genes were evaluated. After in vitro replicative senescence, A-MSCs did not show any significant morphological differences. The proliferation potential of A-MSCs was rapid up to passage 16, and a reduction in the proliferation potential of senescent cells in vitro was observed depending on the passage number. The differentiation potential of late-passage A-MSCs was also reduced compared to early-passage cells. A-MSCs also provided significant closure at the 8th hour in early passages in terms of closure of the scratch area, while late passage A-MSCs exhibited a similar closure profile at the 24th hour. At the transcriptional level, the upregulation of the BAX gene and the downregulation of the p21 and p53 genes suggest that late-passage A-MSCs may not exhibit a senescence profile. In conclusion, A-MSCs have significant potential for clinical use due to the sustainability of MSC properties and their ability to proliferate and migrate with long-term culture.

Funder

Ondokuz Mayıs University, Scientific Research Projects Coordination Unit

Publisher

Frontiers in Life Sciences and Related Technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3