Dynamic testing of a new integrated collector storage solar water heater (ICSSWH) according to standard ISO 9459‐5: Use of a numerical approach for long‐term prediction in different climatic conditions

Author:

Messaouda Anis1ORCID,Hamdi Mohamed2ORCID,Hazami Majdi1,Guizani Amen Allah1

Affiliation:

1. Laboratory of Thermal Processes Research and Technologies Centre of Energy Tunis Tunisia

2. Laboratory of Wind Energy Control and Waste Energy Recovery Research and Technologies Centre of Energy Tunis Tunisia

Abstract

AbstractThis work analyzes the performance of a new Integrated Collector Storage Solar Water Heater (ICSSWH) by using Dynamic System Testing (DST) method according to Standard ISO 9459‐5. The long‐term performance study of the system in different climatic conditions has been achieved by a coupling model between DST results and a numerical approach based on the system transient behavior. Results of the experimental dynamic system evaluation showed that the total store heat capacity Cs, the useful collector surface Ac* and the storage tank heat losses coefficient Us are, respectively, 0.87 MJ/K, 1.21 m2 and 10 W/K. In Tunisian climatic conditions, the ICSSWH system allows covering until 79.3% from a typical family need for a daily consumption of 170 L. The results found allow optimizing the energy gain of the ICSSWH as well as selecting a specific load volume according to the location. Especially, investigations showed that in Stockholm and Riadh climatic conditions, the ICSSWH's solar fraction reached 27% and 83%, respectively, for a daily load volume of 250 L. More importantly, the experimental effort of DST identification can be minimized by coupling DST data with a robust numerical approach.

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental investigation and thermal performance analysis of a two-phase closed thermosyphon system;2023 14th International Renewable Energy Congress (IREC);2023-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3