Thermal assessment of cylindrical parabolic integrated collector storage using input-output and dynamic system testing procedures: Experimental and numerical study

Author:

Messaouda Anis1,Hamdi Mohamed2ORCID,Hazami Majdi1,Guizani AmenAllah1

Affiliation:

1. Laboratory of Thermal Processes, Research and Technologies Centre of Energy, Hammam lif, Tunisia

2. Energy and Thermal Systems Laboratory, National Engineering School of Monastir, Monastir, Tunisia

Abstract

The main limitation of Integrated Collector Storage systems lies in their low efficiencies and high loss coefficients. In this paper, experimental and numerical setups are conducted to assess the thermal performances of low cost Cylindrical Parabolic Integrated Collector storage (CP-ICS). The conceived system has two aluminum plates in parabolic form serving as reflectors, each with a surface area of 2 m2. The storage tank has a volume of 160 L covered with a layer of black paint with single and double transparent insulations. Results of the experimental tests using Input-Output method showed that the daily thermal efficiency ηd of the developed systems is equal to 48.21% and 49.46% for single and double insulation cover configurations, respectively. The total store heat capacity Cs, the useful collector surface Ac* and the storage tank heat losses coefficient Us of the system found using Dynamic System Testing procedure are equal to 0.56 MJ/K, 0.74 m2 and 1.59 W/K, respectively. Even if the energy efficiency of the system is slightly lower than that recorded in conventional systems, numerical results of long-term study using TRNSYS software showed that the system provides a reasonable solar fraction for the needs of a family in Tunisian climate. A comparative assessment of the developed solar collector performances in different representative climates showed that the use of the CP-ICS system presents a promising solution for countries with annual ambient temperatures fluctuating from 13°C to 33°C, such as Araxos with a solar coverage of 30.65% for a daily supply volume of 160 L. More importantly, in Faya-Largeau location, presenting Chadian climate data, the solar fraction is found to be the highest and reached an average of 67.25%.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3