Effect of Intercritical Annealing Time on the Microstructure and Mechanical Properties of Dual‐Phase Steel Processed by Large‐Strain Asymmetric Cold‐Rolling

Author:

Khorasani Fatemeh1,Jamaati Roohollah1ORCID,Jamshidi Aval Hamed1

Affiliation:

1. Department of Materials Engineering Babol Noshirvani University of Technology Shariati Ave. Babol 47148–71167 Iran

Abstract

Herein, the effect of intercritical annealing time on the microstructure and mechanical properties of dual‐phase steel processed by large‐strain asymmetric cold‐rolling is studied. It is observed that the martensite islands are uniformly distributed in the ferrite phase in the microstructures of dual‐phase steels due to performing the asymmetric cold‐rolling before intercritical annealing treatment. As the intercritical annealing time increases up to 10 min, the fraction of martensite increases. By increasing the holding time and fraction of martensite, the carbon content of the martensite phase is decreased. The short‐term intercritical annealing eliminates the yield point phenomenon. However, intercritical annealing at 860 °C for 20 min leads to the reoccurrence of a yield point phenomenon. Increasing the intercritical annealing time to 10 min improves the yield strength to 505 MPa and ultimate tensile strength to 834 MPa. However, the strength decreases sharply after the holding time of 20 min. There is a perfect linear relationship between the mechanical properties and the fraction of martensite. Ductile failure is observed at the center of the fracture surfaces of dual‐phase steels while shear failure occurs at the edges of the fracture surfaces.

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3