Different strategies between queens and workers against fungal pathogens in the termite Reticulitermes chinensis

Author:

Dong Ya‐Nan1ORCID,Niu Tong1,Bai Zhuang‐Dong1,Wang Huan1,Wang Chao1,Dunn Derek W.2,Zhang He13,Wang Rui‐Wu1

Affiliation:

1. School of Ecology and Environment, Northwestern Polytechnical University Xi'an China

2. College of Life Sciences, Northwest University Xi'an Shaanxi China

3. Department of Pathology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China

Abstract

AbstractSocial insects are prone to pathogen infection because of high exposure rates from social interactions. However, it remains unclear whether queens have enhanced pathogen resistance, because reproduction is largely confined to queens. Here, we used a natural host–pathogen system, the subterranean termite Reticulitermes chinensis and the entomopathogenic fungus Metarhizium anisopliae, to investigate the differences in allogrooming, locomotion, and immune gene expression between queens and workers against pathogen infection. We found that fungal infection significantly reduced survival in both queens and workers. Infected queens received significantly more grooming time from sanitary nestmates than infected workers, but they returned much less grooming time to sanitary nestmates than infected workers. Infection resulted in a reduction in the average locomotion speed and distance of queens but had no effect on worker locomotion. Infection resulted in upregulated expression of two immune genes (termicin and transferrin), two antioxidant genes (CAT and SOD), and phosphate genes CYP450 in queens but not in workers. Our results indicated that eusocial termites evolved strategies that prioritize the reproductive castes' welfare in defending against the pathogen infection to ensure continued reproduction and colony persistence.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3