Individual tree segmentation of airborne and UAV LiDAR point clouds based on the watershed and optimized connection center evolution clustering

Author:

Li Yi1ORCID,Xie Donghui1ORCID,Wang Yingjie2,Jin Shuangna1,Zhou Kun1,Zhang Zhixiang1,Li Weihua1,Zhang Wuming3,Mu Xihan1,Yan Guangjian1

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Beijing Engineering Research Center for Global Land Remote Sensing Products Beijing Normal University Beijing China

2. CESBIO University of Toulouse Toulouse France

3. School of Geospatial Engineering and Science Sun Yat‐Sen University Zhuhai China

Abstract

AbstractLight detection and ranging (LiDAR) data can provide 3D structural information of objects and are ideal for extracting individual tree parameters, and individual tree segmentation (ITS) is a vital step for this purpose. Various ITS methods have been emerging from airborne LiDAR scanning (ALS) or unmanned aerial vehicle LiDAR scanning (ULS) data. Here, we propose a new individual tree segmentation method, which couples the classical and efficient watershed algorithm (WS) and the newly developed connection center evolution (CCE) clustering algorithm in pattern recognition. The CCE is first used in ITS and comprehensively optimized by considering tree structure and point cloud characteristics. Firstly, the amount of data is greatly reduced by mean shift voxelization. Then, the optimal clustering scale is automatically determined by the shapes in the projection of three different directions. We select five forest plots in Saihanba, China and 14 public plots in Alpine region, Europe with ULS or ALS point cloud densities from 11 to 3295 pts/m2. Eleven ITS methods were used for comparison. The accuracy of tree top detection and tree height extraction is estimated by five and two metrics, respectively. The results show that the matching rate (Rmatch) of tree tops is up to 0.92, the coefficient of determination (R2) of tree height estimation is up to .94, and the minimum root mean square error (RMSE) is 0.6 m. Our method outperforms the other methods especially in the broadleaf forests plot on slopes, where the five evaluation metrics for tree top detection outperformed the other algorithms by at least 11% on average. Our ITS method is both robust and efficient and has the potential to be used especially in coniferous forests to extract the structural parameters of individual trees for forest management, carbon stock estimation, and habitat mapping.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3