Affiliation:
1. Department of Computer Science University of Maryland College Park Maryland USA
Abstract
AbstractThe Lovász local lemma (LLL) is a keystone principle in probability theory, guaranteeing the existence of configurations which avoid a collection of “bad” events which are mostly independent and have low probability. A seminal algorithm of Moser and Tardos (J. ACM, 2010, 57, 11) (which we call the MT algorithm) gives nearly‐automatic randomized algorithms for most constructions based on the LLL. However, deterministic algorithms have lagged behind. We address three specific shortcomings of the prior deterministic algorithms. First, our algorithm applies to the LLL criterion of Shearer (Combinatorica, 1985, 5, 241–245); this is more powerful than alternate LLL criteria and also leads to cleaner and more legible bounds. Second, we provide parallel algorithms with much greater flexibility. Third, we provide a derandomized version of the MT‐distribution, that is, the distribution of the variables at the termination of the MT algorithm. We show applications to non‐repetitive vertex coloring, independent transversals, strong coloring, and other problems.
Subject
Applied Mathematics,Computer Graphics and Computer-Aided Design,General Mathematics,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献