An Improvement of the Lovász Local Lemma via Cluster Expansion

Author:

BISSACOT RODRIGO,FERNÁNDEZ ROBERTO,PROCACCI ALDO,SCOPPOLA BENEDETTO

Abstract

An old result by Shearer relates the Lovász local lemma with the independent set polynomial on graphs, and consequently, as observed by Scott and Sokal, with the partition function of the hard-core lattice gas on graphs. We use this connection and a recent result on the analyticity of the logarithm of the partition function of the abstract polymer gas to get an improved version of the Lovász local lemma. As an application we obtain tighter bounds on conditions for the existence of Latin transversal matrices.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Reference17 articles.

1. Cluster Expansion for Abstract Polymer Models. New Bounds from an Old Approach

2. [2] Böttcher J. , Kohayakawa Y. and Procacci A. Properly coloured copies and rainbow copies of large graphs with small maximum degree. Random Struct. Alg., to appear. Preprint. arXiv.org/abs/1007.3767

3. On Dependency Graphs and the Lattice Gas

4. A constructive proof of the general lovász local lemma

5. [12] Pegden W. An extension of the Moser-Tardos algorithmic local lemma. Preprint. arXiv.org/abs/1102.2853

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fundamentals of partial rejection sampling;Probability Surveys;2024-01-01

2. Uniqueness and Rapid Mixing in the Bipartite Hardcore Model (extended abstract);2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

3. Deterministic algorithms for the Lovász local lemma: Simpler, more general, and more parallel;Random Structures & Algorithms;2023-04-15

4. Cluster Expansions: Necessary and Sufficient Convergence Conditions;Journal of Statistical Physics;2022-09-24

5. A General Framework for Hypergraph Coloring;SIAM Journal on Discrete Mathematics;2022-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3