Affiliation:
1. School of Mechanical Engineering and Mechanics Xiangtan University Xiangtan China
2. Engineering Research Center of Complex Track Processing Technology & Equipment, Ministry of Education Xiangtan University Xiangtan China
3. Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University Foshan China
Abstract
AbstractBN was modified with Fe3O4 to confer it with paramagnetic responsivity. The scanning electron microscopy and energy dispersive spectrometer (EDS) results demonstrated that with the assistance of an external magnetic field, the paramagnetic BN particles within an epoxy matrix are effectively aligned along the direction of the magnetic field during the curing process of epoxy resin, hence forming continuous thermal conduction pathways. Therefore, the thermal conductivity of the epoxy‐based composite filled with 30 wt% of BN and externally applied with a 50 mT magnetic flux density was 0.7417 (W/m·K), an improvement of 207.89% relative to the pure epoxy resin. The establishment of continuous thermal pathways facilitates effective phonon conduction, thereby further enhancing the thermal conductivity of the material. Meanwhile, this study investigates the chain formation mechanism of Fe3O4‐modified BN under the influence of a magnetic field. When subjected to an applied magnetic field, the magnetic BN embedded in an epoxy resin matrix undergoes magnetization, rotation, and contact. Subsequently, multiple particles initially form short chains, then aggregate into longer chains aligned with the direction of the magnetic field. The findings indicate that the magnetic field induced particle alignment method holds significant potential in the fabrication of high thermal conductivity polymer composites with low filler loading.
Funder
Basic and Applied Basic Research Foundation of Guangdong Province
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献