Preparation and construction mechanism of thermal conductive epoxy‐based composite via magnetic field induced orientation

Author:

Luo Yue123ORCID,Shan Yuzhuo1,Xiong Suya1,Wang Yuhao1,Xiao Xiangwu1,He Xiaoxiang1,Zhou Houming12

Affiliation:

1. School of Mechanical Engineering and Mechanics Xiangtan University Xiangtan China

2. Engineering Research Center of Complex Track Processing Technology & Equipment, Ministry of Education Xiangtan University Xiangtan China

3. Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University Foshan China

Abstract

AbstractBN was modified with Fe3O4 to confer it with paramagnetic responsivity. The scanning electron microscopy and energy dispersive spectrometer (EDS) results demonstrated that with the assistance of an external magnetic field, the paramagnetic BN particles within an epoxy matrix are effectively aligned along the direction of the magnetic field during the curing process of epoxy resin, hence forming continuous thermal conduction pathways. Therefore, the thermal conductivity of the epoxy‐based composite filled with 30 wt% of BN and externally applied with a 50 mT magnetic flux density was 0.7417 (W/m·K), an improvement of 207.89% relative to the pure epoxy resin. The establishment of continuous thermal pathways facilitates effective phonon conduction, thereby further enhancing the thermal conductivity of the material. Meanwhile, this study investigates the chain formation mechanism of Fe3O4‐modified BN under the influence of a magnetic field. When subjected to an applied magnetic field, the magnetic BN embedded in an epoxy resin matrix undergoes magnetization, rotation, and contact. Subsequently, multiple particles initially form short chains, then aggregate into longer chains aligned with the direction of the magnetic field. The findings indicate that the magnetic field induced particle alignment method holds significant potential in the fabrication of high thermal conductivity polymer composites with low filler loading.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3