Bioenergetics model for the nonnative Redside Shiner

Author:

Johnson Rachelle C.12ORCID,Beauchamp David A.1ORCID,Olden Julian D.2ORCID

Affiliation:

1. U.S. Geological Survey, Western Fisheries Research Center Seattle Washington 98115 USA

2. School of Aquatic and Fishery Sciences University of Washington Seattle Washington 98195 USA

Abstract

AbstractObjectiveRedside Shiner Richardsonius balteatus has expanded from its native range in the Pacific Northwest region of North America to establish populations in six other western states. This expansion has fueled concerns regarding competition between Redside Shiner and native species, including salmonids. We developed a bioenergetic model for Redside Shiner, providing a powerful tool to quantify its trophic role in invaded ecosystems and evaluate potential impacts on native species.MethodsMass‐ and temperature‐dependent functions for consumption and respiration were fit based on controlled laboratory experiments of maximum consumption rates and routine metabolic rates using intermittent‐flow respirometry, across a range of fish sizes (0.6–27.3 g) and temperatures (5–31°C). Laboratory growth experiments were conducted to corroborate model performance across different temperatures and feeding rates.ResultInitial bioenergetic simulations of long‐term growth experiments indicated large model error for predicted consumption and growth, and deviations from observed responses varied systematically as a function of daily consumption rate (J·g−1·d−1) and water temperature. A growth rate error correction function was developed and included in the bioenergetics model framework on a daily time step, resulting in decreased absolute model error in all experimental groups. Predicted values from the corrected model were highly correlated with observed values (; consumption = 0.97, final weight = 0.99) and unbiased. These results show that the optimal temperature for Redside Shiner growth (18°C) exceeds that of Pacific salmon Oncorhynchus spp. by 2–6°C under a scenario of high food availability and moderate food quality.ConclusionConsequently, increases in water temperature associated with climate change may favor growth and expansion of Redside Shiner populations, while negatively affecting some salmonids. The bioenergetics model presented here provides the necessary first step in quantifying trophic impacts in sensitive ecosystems where Redside Shiner have invaded or in ecosystems where anadromous salmonid reintroductions are being considered.

Funder

U.S. Geological Survey

Publisher

Wiley

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3