Realized thermal niche approach eliminates temperature bias in bioenergetic model estimates

Author:

Ivanova Silviya V.1ORCID,Fisk Aaron T.2,Johnson Timothy B.3

Affiliation:

1. Great Lakes Institute for Environmental Research University of Windsor Windsor Ontario Canada

2. School of the Environment University of Windsor Windsor Ontario Canada

3. Ontario Ministry of Natural Resources and Forestry Picton Ontario Canada

Abstract

AbstractBioenergetics models estimate ectotherm growth, production, and prey consumption – all key for effective ecosystem management during changing global temperatures. Based on species‐specific allometric and thermodynamic relationships, these models typically use the species' lab‐derived optimum temperatures (physiological optimum) as opposed to empirical field data (realized thermal niche) that reflect actual thermal experience. Yet, dynamic behavioral thermoregulation mediated by biotic and abiotic interactions may provide substantial divergence between physiological optimum and realized thermal niche temperatures to significantly bias model outcomes. Here, using the Wisconsin bioenergetics model and in‐situ year‐round temperature data, we tested the two approaches and compared the maximum attainable lifetime weight and lifetime prey consumption estimates for two salmonid species with differing life histories. We demonstrate that using the realized thermal niche is the better approach because it eliminates significant biases in estimates produced by the physiological optimum. Specifically, using the physiological optimum, slower‐growing Salvelinus namaycush maximum attainable lifetime weight was underestimated, and consumption overestimated, while fast‐growing Oncorhynchus tshawytscha maximum attainable weight was overestimated. While the physiological optimum approach is useful for theoretical studies, our results demonstrate the critical importance that models used by management utilize up‐to‐date system‐ and species‐specific field data representing actual in‐situ behaviors (i.e., realized thermal niche).

Funder

University of Windsor

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Canada Foundation for Innovation

Great Lakes Fishery Commission

Ontario Ministry of Research, Innovation and Science

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3