Investigating rock mutation characteristics and damage state warning model based on energy conversion

Author:

Cheng Hongming1ORCID,Yang Xiaobin2,Lan Yongqing1

Affiliation:

1. School of Coal Engineering Shanxi Datong University Datong Shanxi China

2. School of Emergency Management and Safety Engineering China University of Mining and Technology Beijing China

Abstract

AbstractRock engineering achieves the secondary stress balance through rock mass structure adjustment, where energy conversion is throughout and associated closely with rock deformation and damage. In this study, a series of triaxial compression tests were conducted on red sandstone to investigate these features. The results showed that the damage state of red sandstone specimens presented five stages under different confining pressure, corresponding to the multistage evolution characteristic of the energy conversion. In the case of the dissipation energy conversion ratio (η), it showed five stages: a gradual increase, decreasing gradually and reaching a minimum value, increasing gradually, increasing with growth rate, and accelerated growth, therein the strong nonlinearity reflected the stability and instability of the internal structure of the rock and had the basic characteristics of the mutation theory, therefore the damage state warning model was established on just that. The relation between the η and time fitted by a four‐rank potential function had a fitting parameter (R2) larger than 0.9, and the bifurcation set of the η calculated by the damage state warning model had twice stages less than 0. The second stage, which occurred near the minimum value of the η and run through the plastic deformation stage, could be used to predict rock damage and fracture, and it was proven feasible by acoustic emission (AE) precursor and better than AE warning. This research can enrich the methods for identifying rock damage state and provide reference for revealing the occurrence and development mechanism of various rock instability disasters.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3