Biophysical and Computational Approaches to Study Ternary Complexes: A ‘Cooperative Relationship’ to Rationalize Targeted Protein Degradation

Author:

Ward Jake A.1ORCID,Perez‐Lopez Carles1ORCID,Mayor‐Ruiz Cristina1ORCID

Affiliation:

1. Institute for Research in Biomedicine (IRB Barcelona) BIST, Baldiri Reixac, 10 08028 Barcelona Spain

Abstract

AbstractDegraders have illustrated that compound‐induced proximity to E3 ubiquitin ligases can prompt the ubiquitination and degradation of disease‐relevant proteins. Hence, this pharmacology is becoming a promising alternative and complement to available therapeutic interventions (e. g., inhibitors). Degraders rely on protein binding instead of inhibition and, hence, they hold the promise to broaden the druggable proteome. Biophysical and structural biology approaches have been the cornerstone of understanding and rationalizing degrader‐induced ternary complex formation. Computational models have now started to harness the experimental data from these approaches with the aim to identify and rationally help design new degraders. This review outlines the current experimental and computational strategies used to study ternary complex formation and degradation and highlights the importance of effective crosstalk between these approaches in the advancement of the targeted protein degradation (TPD) field. As our understanding of the molecular features that govern drug‐induced interactions grows, faster optimizations and superior therapeutic innovations for TPD and other proximity‐inducing modalities are sure to follow.

Funder

Mark Foundation For Cancer Research

Ministerio de Ciencia e Innovación

Publisher

Wiley

Subject

Organic Chemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3