Computationally Supported Inversion of Ketoreductase Stereoselectivity

Author:

Delgado‐Arciniega Estela1ORCID,Wijma Hein J.1ORCID,Hummel Chantal1,Janssen Dick B.1ORCID

Affiliation:

1. Biotransformation and Biocatalysis Groningen Biomolecular Sciences and Biotechnology Institute (GBB) University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands

Abstract

AbstractWhereas directed evolution and rational design by structural inspection are established tools for enzyme redesign, computational methods are less mature but have the potential to predict small sets of mutants with desired properties without laboratory screening of large libraries. We have explored the use of computational enzyme redesign to change the enantioselectivity of a highly thermostable alcohol dehydrogenase from Thermus thermophilus in the asymmetric reduction of ketones. The enzyme reduces acetophenone to (S)‐1‐phenylethanol. To invert the enantioselectivity, we used an adapted CASCO workflow which included Rosetta for enzyme design and molecular dynamics simulations for ranking. To correct for unrealistic binding modes, we used Boltzmann weighing of binding energies computed by a linear interaction energy approach. This computationally cheap method predicted four variants with inverted enantioselectivity, each with 6–8 mutations around the substrate‐binding site, causing only modest reduction (2‐ to 7‐fold) of kcat/KM values. Laboratory testing showed that three variants indeed had inverted enantioselectivity, producing (R)‐alcohols with up to 99 % enantiomeric excess. The broad substrate range allowed reduction of acetophenone derivatives with full conversion to highly enantioenriched alcohols. The results demonstrate the use of computational methods to control ketoreductase stereoselectivity in asymmetric transformations with minimal experimental screening.

Publisher

Wiley

Subject

Organic Chemistry,Molecular Biology,Molecular Medicine,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3