Insights into taxadiene synthase catalysis and promiscuity facilitated by mutability landscape and molecular dynamics

Author:

He Siqi,Abdallah Ingy I.,van Merkerk Ronald,Quax Wim J.ORCID

Abstract

Abstract Main conclusion Protein modeling, carbocation docking, and molecular dynamics along with structure-based mutability landscapes provided insight into taxadiene synthase catalysis (first step of the anticancer Taxol biosynthesis), protein structure–function correlations, and promiscuity. Abstract Plant terpenes belong to one of the largest and most diverse classes of natural products. This diversity is driven by the terpene synthase enzyme family which comprises numerous different synthases, several of which are promiscuous. Taxadiene synthase (TXS) is a class I diterpene synthase that catalyzes the first step in the biosynthesis pathway of the diterpene Taxol, an anticancer natural product produced by the Taxus plant. Exploring the molecular basis of TXS catalysis and its promiscuous potential garnered interest as a necessary means for understanding enzyme evolution and engineering possibilities to improve Taxol biosynthesis. A catalytically active closed conformation TXS model was designed using the artificial intelligence system, AlphaFold, accompanied by docking and molecular dynamics simulations. In addition, a mutability landscape of TXS including 14 residues was created to probe for structure–function relations. The mutability landscape revealed no mutants with improved catalytic activity compared to wild-type TXS. However, mutations of residues V584, Q609, V610, and Y688 showed high degree of promiscuity producing cembranoid-type and/or verticillene-type major products instead of taxanes. Mechanistic insights into V610F, V584M, Q609A, and Y688C mutants compared to the wild type revealed the trigger(s) for product profile change. Several mutants spanning residues V584, Q609, Y688, Y762, Q770, and F834 increased production of taxa-4(20),11(12)-diene which is a more favorable substrate for Taxol production compared to taxa-4(5),11(12)-diene. Finally, molecular dynamics simulations of the TXS reaction cascade revealed residues involved in ionization, carbocation stabilization, and cyclization ushering deeper understanding of the enzyme catalysis mechanism. Graphical abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3