3D‐Printed conductive polymeric scaffolds with direct current electrical stimulation for enhanced bone regeneration

Author:

Dixon Damion T.1ORCID,Gomillion Cheryl T.2ORCID

Affiliation:

1. School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering University of Georgia Athens Georgia USA

2. School of Chemical, Materials and Biomedical Engineering, College of Engineering University of Georgia Athens Georgia USA

Abstract

AbstractVarious methods have been used to treat bone defects caused by genetic disorders, injury, or disease. Yet, there is still great need to develop alternative approaches to repair damaged bone tissue. Bones naturally exhibit piezoelectric potential, or the ability to convert mechanical stresses into electrical impulses. This phenomenon has been utilized clinically to enhance bone regeneration in conjunction with electrical stimulation (ES) therapies; however, oftentimes with critical‐sized bone defects, the bioelectric potential at the site of injury is compromised, resulting in less desirable outcomes. In the present study, the potential of a 3D‐printed conductive polymer blend to enhance bone formation through restoration of the bioelectrical microenvironment was evaluated. A commercially available 3D printer was used to create circular, thin‐film scaffolds consisting of either polylactide (PLA) or a conductive PLA (CPLA) composite. Preosteoblast cells were seeded onto the scaffolds and subjected to direct current ES via a purpose‐built cell culture chamber. It was found that CPLA scaffolds had no adverse effects on cell viability, proliferation or differentiation when compared with control scaffolds. The addition of ES, however, resulted in a significant increase in the expression of osteocalcin, a protein indicative of osteoblast maturation, after 14 days of culture. Furthermore, xylenol orange staining also showed the presence of increased mineralized calcium nodules in cultures undergoing stimulation. This study demonstrates the potential for low‐cost, conductive scaffolding materials to support cell viability and enhance in vitro mineralization in conjunction with ES.

Funder

MTF Biologics

Publisher

Wiley

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3