Bioactive materials‐coated polybutylene‐adipate‐co‐terephthalate 3D‐printed scaffolds for application in the bone tissues engineering

Author:

Menezes Felipe Castro1ORCID,Scheibel Jóice Maria1ORCID,de Souza Balbinot Gabriela2ORCID,Miranda Gabriela Messias3ORCID,Leitune Vicente Castelo Branco2ORCID,Collares Fabricio Mezzomo2ORCID,Soares Rosane Michele Duarte1ORCID

Affiliation:

1. Polymeric Biomaterials Research Group (Poli‐BIO), Institute of Chemistry Universidade Federal do Rio Grande do Sul Porto Alegre Brazil

2. Dental Materials Laboratory, School of Dentistry Universidade Federal do Rio Grande do Sul Porto Alegre Brazil

3. Post‐graduation Program of Biosciences Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil

Abstract

AbstractBone tissue engineering (BTE) is a biomedical area that develops scaffolds capable of mimicking and repairing damage on bone tissue. For this, a popular and nonexpensive 3D printing technique named fused deposition modeling (FDM) has been used. The potential use of 3D scaffolds of poly(butylene adipate‐co‐terephthalate (PBAT) has been investigated in BTE since this polymer presents good biocompatibility and degradability, as well as mechanical properties like those offered by the natural bone. A single material does not have the features to promote cell adhesion, proliferation, and differentiation; the incorporation of bioactive substances can overcome this issue. This work aimed to develop 3D printed PBAT scaffolds by FDM technique and coated them with hydroxyapatite (H), bioglass (B), and gelatin (G) by solution immersion technique to obtain a functional biomaterial to be applied on the BTE. Structural characteristics and morphological and mechanical properties of the 3D scaffolds were evaluated. The cell proliferation and mineralization of pre‐osteoblastic cells (MC3T3‐E1) were accessed by methylthiazolyldiphenyl‐tetrazolium bromide, sulphorodhamine B, and Alizarin red assay, respectively. 3D printed PBAT scaffolds were successfully obtained by FDM, and the surface modification of 3D PBAT was proven through the changes observed in structural and morphological characteristics. In addition, the mechanical properties were improved in the modified scaffolds. Also, the coated 3D PBAT scaffolds with any bioactive substance increased and promoted cell proliferation and pre‐osteoblastic differentiation. Therefore, the combination of 3D PBAT scaffolds and H, G, and/or B (doped with niobium) is an alternative to produce functional biomaterials for BTE.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3