Suitable engineering demand parameters for acceleration‐sensitive nonstructural components

Author:

Banihashemi MirAmir1ORCID,Wiebe Lydell1ORCID,Filiatrault André23

Affiliation:

1. Department of Civil Engineering McMaster University Hamilton Ontario Canada

2. Department of Civil Structural and Environmental Engineering University at Buffalo State University of New York Buffalo New York USA

3. University School for Advanced Studies IUSS Pavia Pavia Italy

Abstract

AbstractEarly earthquake design codes used peak ground accelerations (PGAs) as intensity measures (IMs) to characterize the demands of ground motions on structures, but have since shifted towards using spectral accelerations because they provide a better indication of demand. The design of acceleration‐sensitive nonstructural components has followed a similar approach, with modern codes being based on an estimate of the spectral acceleration at the period of the nonstructural component. However, most fragility curves for loss assessment of acceleration‐sensitive nonstructural components, including the existing FEMA P58 library, continue to be based on peak floor accelerations (PFAs). Similar to PGAs as an IM for buildings, a limitation of PFA as an engineering demand parameter (EDP) for nonstructural components is its lack of dependence on the period of those components. In this study, fifteen alternative EDPs suggested in the literature are evaluated as potential candidates for developing seismic damage fragility curves. Acceleration‐sensitive nonstructural components are simulated by single‐degree‐of‐freedom (SDOF) components with elastic perfectly plastic behavior, with a period range of 0.01 to 1 s, and varying strength levels. Nonlinear response history analyses are conducted for the SDOFs, using floor motions obtained from both the first floor and the roof of buildings designed with four distinct seismic force‐resisting systems. Ductility demands for each SDOF are taken as an indicator of damage and are predicted using a linear regression model developed for each specific EDP. The suitability of candidate EDPs is evaluated based on their efficiency and relative sufficiency. Furthermore, a comparison is made between the expected annual loss calculated using fragility curves derived from the selected EDPs to quantify how the EDP used for a fragility curve can affect the seismic loss assessment. The results reveal that the PFA is a suitable EDP only for nonstructural components with very short periods (i.e., less than 0.1 s). Moreover, although the spectral acceleration at the period of the SDOF nonstructural component is a suitable EDP for components that are nearly elastic and are located on the roof of buildings, the peaks that develop in the floor spectra can grossly overstate the demands on nonstructural components that experience significant nonlinearity in their response. In such situations, an average of the spectral accelerations in a range of periods near the period of the SDOF nonstructural component is more appropriate.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Reference58 articles.

1. Performance of Nonstructural Components during the 27 February 2010 Chile Earthquake

2. Earthquake-induced loss assessment of steel frame buildings with special moment frames designed in highly seismic regions

3. FEMA P‐58‐3.Seismic Performance Assessment of Buildings Volume 3—Supporting Electronic Materials and Background Documentation: 3.1.2 Performance Assessment Calculation Tool (PACT) (Version 3.1.2). Washington DC: Applied Technology Council Federal Emergency Management Agency.2018.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3