Brute force prey metabarcoding to explore the diets of small invertebrates

Author:

Flo Snorre12ORCID,Vader Anna1,Præbel Kim34

Affiliation:

1. Department of Arctic Biology The University Centre in Svalbard Longyearbyen, Svalbard Norway

2. Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway

3. The Norwegian College of Fishery Science (NFH) UiT The Arctic University of Norway Tromsø Norway

4. Department of Forestry and Wildlife Management Inland Norway University of Applied Sciences Elverum Norway

Abstract

AbstractPrey metabarcoding has become a popular tool in molecular ecology for resolving trophic interactions at high resolution, from various sample types and animals. To date, most predator–prey studies of small‐sized animals (<1 mm) have met the problem of overabundant predator DNA in dietary samples by adding blocking primers/peptide nucleic acids. These primers aim to limit the PCR amplification and detection of the predator DNA but may introduce bias to the prey composition identified by interacting with sequences that are similar to those of the predator. Here we demonstrate the use of an alternative method to explore the prey of small marine copepods using whole‐body DNA extracts and deep, brute force metabarcoding of an 18S rDNA fragment. After processing and curating raw data from two sequencing runs of varying depths (0.4 and 5.4 billion raw reads), we isolated 1.3 and 52.2 million prey reads, with average depths of ~15,900 and ~120,000 prey reads per copepod individual, respectively. While data from both sequencing runs were sufficient to distinguish dietary compositions from disparate seasons, locations, and copepod species, greater sequencing depth led to better separation of clusters. As computation and sequencing are becoming ever more powerful and affordable, we expect the brute force approach to become a general standard for prey metabarcoding, as it offers a simple and affordable solution to consumers that is impractical to dissect or unknown to science.

Funder

Norges Forskningsråd

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3