Oxo‐Bridged Zr Dimers as Well‐defined Models of Oxygen Vacancies on ZrO2

Author:

Wimmer Erik J.1,Klostermann Sina V.2,Ringenberg Mark3,Kästner Johannes2ORCID,Estes Deven P.1ORCID

Affiliation:

1. University of Stuttgart Institute of Technical Chemistry Pfaffenwaldring 55 70569 Stuttgart Germany

2. University of Stuttgart Institute for Theoretical Chemistry Pfaffenwaldring 55 70569 Stuttgart Germany

3. Société Suisse des Explosifs Fabrikstrasse 48 CH–3900 Brig Switzerland

Abstract

AbstractWhile ZrO2 is known to have a large effect on the activity and selectivity of the Cu/ZrO2 catalyst for methanol synthesis, its role in this process is poorly understood. Surface defects such as oxygen vacancies could play a role in the strong metal‐support interaction (SMSI) between Cu and ZrO2. However, due to the complexity of the surfaces, the exact molecular nature of this interaction is not at present known. Here, we make well‐defined models of both reduced and coordinatively unsaturated surface oxygen vacancies on ZrO2 using the molecular precursor [Cp2ZrCl]22‐O) (1). Complex 1 can be reduced to form a complex (2) containing one Zr(III) center and a bridging hydride ligand (according to EPR and IR spectroscopy) derived from C−H activation of either thf or the Cp ring. Complex 2 reacts with CO2 to largely produce CO, suggesting that surface defects with similar structures probably do not play a role in the industrial catalyst. Halide abstraction from complex 1 results in the Lewis acidic species 3, which has similar Lewis acid properties to acidic defects on the ZrO2 surface. Similarities of both of these model species to real surface oxygen vacancies and their role in the catalytic reaction are discussed.

Funder

Deutsche Forschungsgemeinschaft

Universität Stuttgart

Publisher

Wiley

Subject

Inorganic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3