A quantitative microscopic view on the gas‐phase‐dependent phase transformation from tetragonal to monoclinic ZrO2

Author:

Bekheet Maged F.1ORCID,Schlicker Lukas1ORCID,Popescu Radian2ORCID,Riedel Wiebke3ORCID,Grünbacher Matthias4,Penner Simon4ORCID,Gurlo Aleksander1ORCID

Affiliation:

1. Technische Universität Berlin Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials Berlin Germany

2. Karlsruher Institut für Technologie (KIT) Laboratorium für Elektronenmikroskopie Kaiserstrasse 12 Karlsruhe Germany

3. Institut für Chemie Freie Universität Berlin Berlin Germany

4. Institute of Physical Chemistry University of Innsbruck Innsbruck Austria

Abstract

AbstractZrO2 is a versatile material with diverse applications, including structural ceramics, sensors, and catalysts. The properties of ZrO2 are largely determined by its crystal structure, which is temperature‐ and atmosphere dependent. Thus, this work focuses on a quantitative analysis of the temperature‐ and gas atmosphere‐dependent phase transformation of tetragonal t‐ZrO2 into monoclinic m‐ZrO2 during heating–cooling cycles from room temperature to 1273 K. Synchrotron‐based in situ X‐ray diffraction (XRD) studies in gas atmospheres of different reduction strengths, namely, 5 vol% H2/Ar, He, CO2, and air, revealed a stabilizing effect of inert and reductive environments, directly yielding different temperature onsets in the phase transformation during cooling (i.e., 435, 510, 710, and 793 K for 5 vol% H2/Ar, He, CO2, and air, respectively). Rietveld refinement shows a direct influence of the atmosphere on grain size, unit cell, and weight fraction of both polymorphs in the product composite matrix. The tetragonal‐to‐monoclinic (t–m) phase transformation is suppressed in the sample heated only up to ∼850 K, independent of the gas atmosphere. The results of ex situ XRD, transmission electron microscopic, electron paramagnetic resonance, and oxygen titration experiments confirmed that the phase transformation is accompanied by a change in the crystallite/particle size and the amount of lattice defects (i.e., oxygen vacancy). Due to the different onset temperatures, a complex interplay between kinetic limitations of phase transformation and grain sintering yields different pathways of the phase transformation and, eventually, very different final crystallite sizes of both t‐ZrO2 and m‐ZrO2.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3