Chitosan‐Based Nanogels Containing Ln3+ Chelates (Ln=Gd, Dy) as T1 and T2 MRI Probes

Author:

Ricci Marco1ORCID,Carniato Fabio1ORCID,Tei Lorenzo1ORCID,Camorali Sara1ORCID,Ferrauto Giuseppe2ORCID,Botta Mauro1ORCID

Affiliation:

1. Dipartimento di Scienze e Innovazione Tecnologica and Magnetic Resonance Platform (PRISMA-UPO) Università del Piemonte Orientale Viale Teresa Michel 11 15121 Alessandria Italy

2. Molecular Imaging Center Department of Molecular Biotechnology and Health Sciences University of Turin Via Nizza 52 10126 Torino Italy

Abstract

AbstractNovel nanogels, characterized by high stability and incorporating macrocyclic chelates of Gd(III) and Dy(III), were synthesized and assessed for their effectiveness as T1 and T2 relaxation agents, respectively. In this specific design, we employed octacoordinated bifunctional Gd‐1,7‐DOTAGA2 chelate to cross‐link chitosan chains. The results revealed that the sample exhibited a relaxivity value at clinical magnetic field strengths (1.5 T), approximately seven times higher than that of currently available clinical contrast agents and good MRI contrast efficacy at both 7.1 and 1 T. Furthermore, the nanogel displayed excellent stability in biological fluids, with no discernible interactions with serum biomolecules and no release of metal. In addition to Gd(III)‐based probes commonly used as T1 positive contrast agents, the nanogel with the corresponding Dy‐1,7‐DOTAGA2 chelate was prepared to explore its potential as a T2 MRI probe. Dy‐based nanogel demonstrated notably elevated transverse relaxivity values compared to the free chelate at high magnetic fields (>3 T) and significant T2 MRI contrast at 7.1 T, a capability often lacking when employing an equivalent concentration of a low‐molecular‐weight Dy(III) complex. The characterization of paramagnetic complexes was completed through the measurement of 1H NMRD profiles and 17O NMR data.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Wiley

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3