Effects of processing methods on quality, antioxidant capacity, and cytotoxicity of Ginkgo biloba leaf tea product

Author:

Li Fengnan1,Boateng Isaac D12ORCID,Yang Xiao‐Ming1ORCID,Li Yuanyuan3,Liu Weimin1

Affiliation:

1. School of Food and Biological Engineering Jiangsu University Zhenjiang China

2. Division of Food, Nutrition and Exercise Sciences University of Missouri Columbia MO USA

3. Zhenjiang Food and Drug Supervision and Inspection Center Zhenjiang China

Abstract

AbstractBACKGROUNDGinkgo biloba leaves contain beneficial flavonoids, bilobalide (BB), and ginkgolides. However, the toxic ginkgolic acid (GA) limit its application. In this study, various traditional processing methods were used to prepare G. biloba leaf tea (GBLT), including white tea, black tea, dark tea, green tea, and freeze‐dried as control, followed by investigations of their effects on quality, antioxidant capacity, bioactive components, and cytotoxicity of the tea products.RESULTSResults showed that different processing methods significantly impact the tea products' quality indexes and the principal component analysis (PCA) and hierarchical cluster analysis (HCA) corroborated it. White tea had the highest total sugar (TS) and GA content and the most potent cytotoxicity on HepG2 cells. However, TS and GA content and the cytotoxicity of GBLT markedly decreased during fermentation and fixation. Moreover, white tea possessed higher total phenolic content (TPC), total flavonoid content (TFC), and more vigorous antioxidant activities than green tea, black tea, and dark tea. Terpene trilactones value was stable, but different catechins contents fluctuated according to the manufacturing process of different GBLTs. Among the four GBLTs, dark tea combining fixation and fermentation had the lowest GA content and cytotoxicity, less bioactive components reduction, appropriate quality, and stronger flavor.CONCLUSIONThese findings demonstrate that fixation and fermentation help reduce GAs during the manufacturing of GBLT. However, their ability to retain bioactive substances needs further optimization in future studies. © 2023 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3