Functional hierarchy of the angular gyrus and its underlying genetic architecture

Author:

Song Yu123,Wang Chunli4,Cai Huanhuan123,Chen Jingyao123,Liu Siyu123,Zhu Jiajia123ORCID,Yu Yongqiang123ORCID

Affiliation:

1. Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China

2. Research Center of Clinical Medical Imaging, Anhui Province Hefei China

3. Anhui Provincial Institute of Translational Medicine Hefei China

4. Department of Clinical Laboratory The First Affiliated Hospital of Anhui Medical University Hefei China

Abstract

AbstractThe angular gyrus (AG), given its rich connectivity and its location where multisensory information converges, is a functionally and anatomically heterogeneous structure. Using the state‐of‐the‐art functional gradient approach and transcription‐neuroimaging association analysis, we sought to determine whether there is an overarching hierarchical organization of the AG and if so, how it is modulated by the underlying genetic architecture. Resting‐state functional MRI data of 793 healthy subjects were obtained from discovery and validation datasets. Functional gradients of the AG were calculated based on the voxel‐wise AG‐to‐cerebrum functional connectivity patterns. Combined with the Allen Human Brain Atlas, we examined the spatial correlations between the AG functional gradient and gene expression. The dominant gradient topography showed a dorsoanterior–ventroposterior hierarchical organization of the AG, which was related to its intrinsic geometry. Concurrently, AG functional subdivisions corresponding to canonical functional networks (behavioral domains) were distributed along the dominant gradient in a hierarchical manner, that is, from the default mode network (abstract cognition) at one extreme to the visual and sensorimotor networks (perception and action) at the other extreme. Remarkably, we established a link between the AG dominant gradient and gene expression, with two gene sets strongly contributing to this link but diverging on their functional annotation and specific expression. Our findings represent a significant conceptual advance in AG functional organization, and may introduce novel approaches and testable questions to the investigation of AG function and anatomy in health and disease.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3