Author:
Zhang Yuan,Lu Hai,Ren Xuesong,Zhang Junfeng,Wang Yu,Zhang Chunhong,Zhao Xiaofeng
Abstract
BackgroundAcupuncture, as an alternative and complementary therapy recommended by the World Health Organization for stroke treatment, holds potential in ameliorating neurofunctional deficits induced by ischemic stroke (IS). Understanding the immediate and long-term effects of acupuncture and their interrelation would contribute to a better comprehension of the mechanisms underlying acupuncture efficacy.MethodsActivation likelihood estimation (ALE) meta-analysis was used to analyze the brain activation patterns reported in 21 relevant functional neuroimaging studies. Among these studies, 12 focused on the immediate brain activation and 9 on the long-term activation. Single dataset analysis were employed to identify both immediate and long-term brain activation of acupuncture treatment in IS patients, while contrast and conjunction analysis were utilized to explore distinctions and connections between the two.ResultsAccording to the ALE analysis, immediately after acupuncture treatment, IS patients exhibited an enhanced cluster centered around the right precuneus (PCUN) and a reduced cluster centered on the left middle frontal gyrus (MFG). After long-term acupuncture treatment, IS patients showed an enhanced cluster in the left PCUN, along with two reduced clusters in the right insula (INS) and hippocampus (HIP), respectively. Additionally, in comparison to long-term acupuncture treatment, the right angular gyrus (ANG) demonstrated higher ALE scores immediately after acupuncture, whereas long-term acupuncture resulted in higher scores in the left superior parietal gyrus (SPG). The intersecting cluster activated by both of them was located in the left cuneus (CUN).ConclusionThe findings provide initial insights into both the immediate and long-term brain activation patterns of acupuncture treatment for IS, as well as the intricate interplay between them. Both immediate and long-term acupuncture treatments showed distinct patterns of brain activation, with the left CUN emerging as a crucial regulatory region in their association.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/, CRD42023480834.