Local mapping of surface potential in pentacene thin film under gate bias voltage obtained by scanning kelvin probe microscopy

Author:

Ndikumana Joel1,An Kunsik1ORCID

Affiliation:

1. Department of Mechatronics Engineering Konkuk University Glocal Campus Chungju Republic of Korea

Abstract

AbstractWe report the local surface potential mapping of pentacene film prepared by physical vapor deposition with scanning kelvin probe microscopy where the sample is scanned under different gate voltages. Surface topography and the corresponding potential maps were obtained simultaneously. Spatial distribution of the surface potential at a low gate voltage is clearly correlated with topographic features. A lower electrostatic potential was measured at the grain boundaries (GBs), suggesting that GBs behave as hole traps. This observation is bolstered by conductive atomic force microscopy (C‐AFM) data, which reveals a higher conductivity within the grains as opposed to the GBs. An increase in gate voltage minimizes the potential differences at the grain and GBs, suggesting a modification in trap occupancy. We expect that these experimental results, along with existing theories, will provide a better understanding of the microstructural‐electrical properties of pentacene film.Research Highlights Local surface potential mapping of pentacene film with scanning kelvin probe microscopy. Correlation between the surface potential map and topography at a low gate voltage. Decrease of the potential distribution inhomogeneity by the gate voltage increasement. Higher conductivity at inner grain than grain boundary in conductive atomic force microscopy.

Funder

Konkuk University

Publisher

Wiley

Subject

Medical Laboratory Technology,Instrumentation,Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3