FLAME GPU 2: A framework for flexible and performant agent based simulation on GPUs

Author:

Richmond Paul1ORCID,Chisholm Robert1ORCID,Heywood Peter1ORCID,Chimeh Mozhgan Kabiri2ORCID,Leach Matthew1ORCID

Affiliation:

1. The Department of Computer Science University of Sheffield Sheffield UK

2. NVIDIA Bristol UK

Abstract

AbstractAgent based modelling (ABM) offers a powerful abstraction for scientific study in a broad range of domains. The use of agent based simulators encourages good software engineering design such as separation of concerns, that is, the uncoupling of the model description from its implementation detail. A major limitation in current approaches to ABM simulation is that of the trade off between simulator flexibility and performance. It is common that highly optimised simulations, such as those which target graphics processing units (GPU) hardware, are implemented as standalone software. This work presents a software framework (FLAME GPU 2) which balances flexibility with performance for general purpose ABM. Methods for ensuring high computational efficacy are demonstrated by, minimising data movement, and ensuring high device utilisation by exploiting opportunities for concurrent code execution within a model and through the use of ensembles of simulations. A novel hierarchical sub‐modelling approach is also presented which can be used to model certain types of recursive behaviours. This feature is shown to be essential in providing a mechanism to resolve competition for resources between agents within a parallel environment which would otherwise introduce race conditions. To understand the performance characteristics of the software, a benchmark model with millions of agents is used to explore the use of simulation ensembles and to parametrically investigate concurrent code execution within a model. Performance speedups are demonstrated of 3.5 and 10 respectively over a baseline GPU implementation. Our hierarchical sub‐modelling approach is used to demonstrate the implementation of a recursive algorithm to resolve competition of agent movement which occurs as a result of agent desire to simultaneously occupy discrete areas high in a ‘resource’. The algorithm is used to implement a classical socio‐economics model, Sugarscape, with populations of up to 16M agents.

Funder

Engineering and Physical Sciences Research Council

European Commission

Publisher

Wiley

Subject

Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3