XO2 (X = Pd, Pt) Monolayers: A Promising Thermoelectric Materials

Author:

Wani Aadil Fayaz1,Patra Lokanath2,Srinivasan Marutheeswaran3,Singh Jaspal4,Abdelmohsen Shaimaa A. M.5,Alanazi Meznah M.5,Dhiman Shobhna1,Kaur Kulwinder6ORCID

Affiliation:

1. Department of Applied Sciences Punjab Engineering College (Deemed to be University) Chandigarh 160012 India

2. Department of Mechanical Engineering University of California Santa Barbar CA 93106 USA

3. School of Physical Sciences Amrita Vishwa Vidyapeetham Mysure 570026 India

4. Department of Physics Mata Sundri University Girls College Mansa Punjab 151505 India

5. Department of Physics College of Science Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia

6. Department of Physics Mehr Chand Mahajan DAV College for Women Sector 36 Chandigarh 160036 India

Abstract

AbstractIn this work, the structural, thermoelectric, and electronic properties of XO2 (X = Pd, Pt) monolayers are investigated using density functional approach and Boltzmann transport equations (BTE). These materials are semiconductor in nature having indirect band gap 1.40 (1.69 eV) for PdO2 (PtO2) monolayers. These materials are chemically as well as dynamical stable. The observation of a sharp peak in the vicinity of the Fermi level indicates a high value of the Seebeck coefficient (S). The calculated value of S is 2269 (2734) µV K−1 with respect to n (p)‐type doping at carrier concentration of 1.12 (2.33) × 1013 cm−2 for PdO2 (PtO2) monolayer at 300 K. Calculations reveal a lattice thermal conductivity (κl) of 15.85 and 12.41 Wm−1K−1 for PdO2 and PtO2 monolayers, respectively at room temperature. Monolayer PtO2 shows a larger S and smaller k as compared to PdO2. Due to the maximum value of power factor and minimum value of lattice thermal conductivity, ZT for n‐type doped PtO2 monolayer (1.04) is higher than PdO2 monolayers (0.87). The findings provide a blueprint for evaluating the thermal energy conversion efficiency of XO2 monolayers for potential thermoelectric applications.

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3