The high cycle fatigue testing of High‐Performance Concretes using high frequency excitation

Author:

Madadi Hamid1,Steeb Holger12

Affiliation:

1. Institute of Applied Mechanics (CE),University of Stuttgart Stuttgart Germany

2. SC SimTech University of Stuttgart,Stuttgart Germany

Abstract

AbstractThe effect of fatigue failure in brittle materials like (ultra) High Performance Concrete (UHPC) due to cyclic loading causes unexpected failure that consequently results in heavy costs in marine and civil structures. To characterize the effect of fatigue, cyclic loading tests are performed, and “the number of cycles to failure” are experimentally determined. One problem with these kinds of tests is that such experimental investigations are potentially expensive, i.e., time‐consuming process since the number of loading cycles could be extremely high. Further, within the different damage phases of the cycling tests, one has no access to the small‐scale, i.e., microscopical evolution of (micro‐)cracks. Additionally, a full characterization of the small‐strain stiffness evolution of the material is challenging. The goal of the research investigation is to combine a (large amplitude) High Cycle Fatigue experiment with a (low amplitude) Dynamic Mechanical Analysis (DMA). Using a setup based on the piezoelectric actuator, the (rate‐dependent) mechanical properties of the material in tangential space, and the failure modes of the material will be examined accurately. The excitation frequency is between 0.01 Hz to 1000 Hz which allows for reducing the experimental investigation time to failure. Further, it allows investigating the effect of frequency on the number of cycles to failure. Firstly, experimental results for HPC and berea sandstone samples will be presented. Harmonic experimental data include (direct) strain measurements in axial and circumferential directions as well as forces in axial directions. In addition, the resulting complex Young's modulus and evolving damage‐like “history” of HPC and berea sandstone specimens will be shown.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3