High‐speed fatigue testing of high‐performance concretes and parallel frequency sweep characterization

Author:

Madadi Hamid1ORCID,Steeb Holger12ORCID

Affiliation:

1. Institute of Applied Mechanics (CE) University of Stuttgart Stuttgart Germany

2. SC SimTech University of Stuttgart Stuttgart Germany

Abstract

AbstractCycling loading of brittle materials like ultra‐high‐performance concrete (UHPC), which is often used in marine and civil structures, results in unexpected failures. When a material is subjected to cyclic loading, its mechanical properties change due to the evolution of (micro‐)fractures often denoted as damage. To better understand the effective material's properties under such kind of fatigue load and to relate the material's properties to the specific time‐dependent loading characteristics, the mechanical response of the material shall be characterized at characteristic harmonic excitations.Therefore, cyclic loading experiments are conducted to determine how the evolution of microfractures, that is, fatigue, affects the material's effective mechanical properties and after how many cycles microfractures further evolve towards meso‐ and macrofractures leading finally to a critical number of cycles to material's failure. The problem with such cyclic fatigue tests is that they are potentially “expensive” to conduct as the number of loading cycles at failure can be extremely high. Moreover, it is not possible to observe and characterize further the evolution of (micro‐)fractures within the different damage phases of the cycling experiment. Further, it is challenging to characterize the material's small‐strain stiffness evolution.In this investigation, a combination of a (high‐amplitude) high‐frequency excitation and a high‐speed fatigue testing approach is used for the high cycle fatigue experiment along with a characterization approach of the material properties using a (low‐amplitude) dynamic mechanical analysis (DMA). The test setup applies harmonic excitations for high and low amplitudes using a high‐voltage piezoelectric actuators. Furthermore, the failure modes of the material will be examined.The excitation frequency f for the fatigue test is significantly higher than in classical low‐ and high‐cyclic fatigue approaches, that is, Hz, allowing to reduce the overall time of the experimental investigation time to failure. Further, the frequency‐dependent number of cycles to failure is studied. Similar to standard DMA, effective complex mechanical properties of the material in tangential space are obtained in frequencies between 0.01 and 1000 Hz; while the observed mechanical properties of these materials change with increasing frequency. In the case of materials' behavior, by increasing the frequency, Young's modulus increases and Poisson's ratio decreases. Experimental fatigue results will be presented for UHPC samples. Harmonic experimental data include (direct) strain measurements in axial and circumferential directions as well as forces in axial directions. In addition, the resulting complex Young's modulus and evolving damage‐like “history” of UHPC will be shown.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference11 articles.

1. Investigation of the Influence of Moisture Content on Fatigue Behaviour of HPC by Using DMA and XRCT

2. A review of concrete properties under the combined effect of fatigue and corrosion from a material perspective

3. The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression

4. CEB – Comité Euro‐international du Béton(Ed.): “CEB‐FIP Model Code 1990”. Bulletin d’Information. No. 213/214. London: Thomas Telford Ltd.; 1993.

5. fib international. (2012)fib Bulletin No. 65: Model code 2010 final draft Volume 1. fib‐international.org.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3