Modeling flow through tubes and annuli with liquid‐infused surfaces for enhanced stability of the fluid‐fluid interface

Author:

Zimmermann Sebastian1,Bold Ellen2,Oesterschulze Egbert2,Chijiwa Munehiro34,Schäfer Mareike34,L'huillier Johannes34,Schönecker Clarissa1ORCID

Affiliation:

1. Department of Mechanical and Process Engineering Rheinland‐Pfälzische Technische Universität Kaiserslautern‐Landau (RPTU) Kaiserslautern Germany

2. Department of Physics Rheinland‐Pfälzische Technische Universität Kaiserslautern‐Landa (RPTU) Kaiserslautern Germany

3. Photonik‐Zentrum Kaiserslautern e.V. Kaiserslautern Germany

4. Research Center OPTIMAS, RPTU Kaiserslautern‐Landau Kaiserslautern Germany

Abstract

AbstractSuperhydrophobic (SHS) and liquid‐infused surfaces (LIS) have shown great potential in various engineering applications. Due to their heterogeneous surface properties, a mathematical description of the flow behavior along such surfaces is challenging. Circular textured surfaces are of particular importance. They are modeled as either axially traversed tubes or annuli consisting of no‐slip walls that are padded with rotationally symmetric finite‐shear regions. The latter represents a viscous interaction zone with a second fluid, assumed with layer thickness zero. Zimmermann and Schönecker provide analytical equations that describe the flow field and effective slip length for such geometries. They are applicable to Newtonian fluids of arbitrary viscosity ratio. This article emphasizes the development of principles and guidelines for the design of SHS and LIS to enhance sliding effects, based on these analytical models. The approach presented here facilitates an geometric evaluation of slippery circular surfaces, aiming to offer insights for the design. Through this research, the potential for significant energy savings and enhanced fluid transport performance can be realized, contributing to the development of more efficient fluid engineering systems.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3