Adaptive super twisting observer‐based prescribed time integral sliding mode tracking control of uncertain robotic manipulators

Author:

Shen Hesong1ORCID,Song Tangzhong1ORCID,Fang Lijin1ORCID,Wang Huaizhen2ORCID,Zhang Yue3ORCID

Affiliation:

1. Faculty of Robot Science and Engineering Northeastern University Shenyang China

2. Institute of Shandong New Generation Information Industry Technology Inspur Group Jinan China

3. School of Mechanical Engineering and Automation Northeastern University Shenyang China

Abstract

SummaryA novel integral sliding mode control (ISMC) strategy combined with an adaptive super twisting observer (ASTO) for an uncertain robotic manipulator tracking control system is presented in this article. The comprehensive uncertainties including both parameter perturbations and external disturbances are considered during the controller design. Firstly, a new nominal control law with prescribed time convergent property based on time varying scaling function is presented for the system without uncertainties. Then this nominal control law constitutes the prescribed time convergent sliding surface for ISMC. As the reaching phase is eliminated in ISMC, leading to the prescribed time stability of the whole control system without uncertainties. Secondly, take the system uncertainties (both the matched and unmatched uncertainties) into consideration, two ASTOs are designed for handling them. So, the lumped uncertainties of the robotic manipulator control system can be well estimated and compensated in finite time with the help of backstepping method. Besides, the finite time convergent adaptive switching gains of the ASTO make the system stable without knowing the bounds of the uncertainties exactly and suppress the chattering phenomenon of control input. Finally, the proposed control algorithm is validated by simulation and experiment on a robotic manipulator. Also, from a quantitative analysis, we testify the proposed control scheme outperforms the compared one in all of the discussed cases of simulation part.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3