Seasonal dynamics of canopy interception loss within a deciduous and a coniferous forest

Author:

Andreasen Mie1,Christiansen Jesper R.2,Sonnenborg Torben O.1,Stisen Simon1ORCID,Looms Majken C.2

Affiliation:

1. Department of Hydrology Geological Survey of Denmark and Greenland Copenhagen Denmark

2. Department of Geosciences and Natural Resource Management University of Copenhagen Denmark

Abstract

AbstractCanopy interception loss is a key process in forest hydrology and the role of interception loss in relation to the forest water budgets and future impact of afforestation on water resources is important to quantify. Based on high frequency in situ monitoring, the effect of species‐ and leaf‐cover‐specific canopy structure metrics for interception loss estimation is examined at the two most typical forest types in Denmark. First, interception loss is estimated from precipitation and throughfall data collected in two even‐aged (40–60 years) temperate oak (deciduous) and Norway spruce (coniferous) forests over 13 and 11 months, respectively. Second, based on these observations we estimated canopy structure parameters relevant for interception loss; direct throughfall (ρ), the precipitation necessary to saturate the canopy (P'), the canopy evaporation as a fraction of precipitation (EC/P) and canopy storage capacity (S). Third, we compare observation‐based interception loss with predictions obtained by the analytical Gash interception model using the derived canopy structure parameters. Lastly, the effect of species‐ and leaf‐cover on the interception loss is quantified by applying the canopy structure parameters of the deciduous and coniferous forest on the same daily precipitation data set of approximately 1 year in the Gash model. We found that the derived canopy structure parameters reflect the seasonal change in the leaf cover of the deciduous forest and different parameters are identified for the two forest types. In the deciduous forest, improved agreement between observation‐based and predicted interception loss is obtained using canopy structure parameters for the leafless and full‐foliage periods instead of annual average values. The share of throughfall and interception loss to precipitation (total sum of precipitation = 526 mm) is 65% (340 mm) and 35% (186 mm) for the deciduous forest, respectively, and 49% (260 mm) and 51% (266 mm) for the coniferous forest, respectively. A seasonal variation of interception loss is observed in the deciduous forest where the share of interception loss to precipitation is 40% during the period with leaves on the trees (June to November) and 22% for the leafless periods (December to May). Thus, species‐ and leaf‐cover‐specific canopy structure metrics enhance model performance of throughfall and interception loss dynamics in forests.

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3