Tree trait-mediated differences in soil moisture regimes: A comparative study of Beech, Spruce, and Larch in a drought-prone area of Central Europe

Author:

Kuželková Marta1,Jačka Lukáš1,Kovář Martin1,Hradilek Václav1,Máca Petr1

Affiliation:

1. Czech University of Life Sciences Prague

Abstract

Abstract Species-specific tree traits substantially impact precipitation partitioning, soil infiltration, retention, and overall water management. With the changing climate, the evidence of drought-induced tree mortality is increasing, indicating the need for a shift to more resilient species. Therefore, the knowledge of tree species' effect on soil-water management is needed. We used a total of 54 stations for monitoring the soil moisture regimes of silt loam soil in Central Bohemia under three common and different tree species (spruce, larch, and beech). For the dry and warm part of the year 2022, the soil moisture in winter and early spring was significantly lowered by high canopy interception and gradually depleted by early spring transpiration of evergreen spruce, where mean values were more than 15% lower than for beech. Since March, the soil moisture under spruce was already below the limit of easily available water. In contrast, the deciduous beech and larch did not show a significant decrease until the foliage emergence in early May. The beech stands showed the highest soil moisture levels, which we attributed to a more effective water recharge mechanism induced by its structural traits. This adaptive strategy is vital as soil-water storage is critical for coping with climate change. In general, the results show a distinct advantage in the water recharge ability of deciduous trees and that the selection of tree species can distinctly affect soil moisture conditions, especially during drought periods in areas characterized by tight hydrological balance.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3