Exploring genomic feature selection: A comparative analysis of GWAS and machine learning algorithms in a large‐scale soybean dataset

Author:

Al‐Mamun Hawlader A.1ORCID,Danilevicz Monica F.1,Marsh Jacob I.2,Gondro Cedric3,Edwards David1ORCID

Affiliation:

1. Centre for Applied Bioinformatics and School of Biological Sciences University of Western Australia Perth Western Australia Australia

2. Department of Biology University of North Carolina Chapel Hill North Carolina USA

3. Department of Animal Science Michigan State University East Lansing Michigan USA

Abstract

AbstractThe surge in high‐throughput technologies has empowered the acquisition of vast genomic datasets, prompting the search for genetic markers and biomarkers relevant to complex traits. However, grappling with the inherent complexities of high dimensionality and sparsity within these datasets poses formidable hurdles. The immense number of features and their potential redundancy demand efficient strategies for extracting pertinent information and identifying significant markers. Feature selection is important in large genomic data as it helps in enhancing interpretability and computational efficiency. This study focuses on addressing these challenges through a comprehensive investigation into genomic feature selection methodologies, employing a rich soybean (Glycine max L. Merr.) dataset comprising 966 lines with over 5.5 million single nucleotide polymorphisms. Emphasizing the “small n large p” dilemma prevalent in contemporary genomic studies, we compared the efficacy of traditional genome‐wide association studies (GWAS) with two prominent machine learning tools, random forest and extreme gradient boosting, in pinpointing predictive features. Utilizing the expansive soybean dataset, we assessed the performance of these methodologies in selecting features that optimize predictive modeling for various phenotypes. By constructing predictive models based on the selected features, we ascertain the comparative prediction accuracies, thereby illuminating the strengths and limitations of these feature selection methodologies in the realm of genomic data analysis.

Funder

Australian Research Council

National Institute of Food and Agriculture

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3